High-Order Discontinuous Galerkin Methods using a Spectral Multigrid Approach
نویسندگان
چکیده
منابع مشابه
Algebraic Multigrid Preconditioning of High-Order Spectral Elements for Elliptic Problems on a Simplicial Mesh
Algebraic multigrid is investigated as a solver for linear systems that arise from high-order spectral element discretizations. An algorithm is introduced that utilizes the efficiency of low-order finite elements to precondition the high-order method in a multilevel setting. In particular, the efficacy of this approach is highlighted on simplexes in two and three dimensions with nodal spectral ...
متن کاملA Spectral-Element Discontinuous Galerkin Lattice Boltzmann Method for Incompressible Flows
We present a spectral-element discontinuous Galerkin lattice Boltzmann method for solving single-phase incompressible flows. Decoupling the collision step from the streaming step offers numerical stability at high Reynolds numbers. In the streaming step, we employ high-order spectral-element discretizations using a tensor product basis of one-dimensional Lagrange interpolation polynomials based...
متن کاملMultigrid Optimization for Space-Time Discontinuous Galerkin Discretizations of Advection Dominated Flows
The goal of this research is to optimize multigrid methods for higher order accurate space-time discontinuous Galerkin discretizations. The main analysis tool is discrete Fourier analysis of twoand three-level multigrid algorithms. This gives the spectral radius of the error transformation operator which predicts the asymptotic rate of convergence of the multigrid algorithm. In the optimization...
متن کاملNumerical Evaluation of P-multigrid Method for the Solution of Discontinuous Galerkin Discretizations of Diffusive Equations
This paper describes numerical experiments with P-multigrid to corroborate analysis, validate the present implementation, and to examine issues that arise in the implementations of the various combinations of relaxation schemes, discretizations and P-multigrid methods. The two approaches to implement P-multigrid presented here are equivalent for most high-order discretization methods such as sp...
متن کاملLocal Discontinuous Galerkin Method and High Order Semi-Implicit Scheme for the Phase Field Crystal Equation
Abstract. In this paper, we present a local discontinuous Galerkin (LDG) method and two unconditionally energy stable schemes for the phase field crystal (PFC) equation. The semidiscrete energy stability of the LDG method is proved first. The PFC equation is a sixth order nonlinear partial differential equation (PDE), which leads to the severe time step restriction (Δt = O(Δx6)) of explicit tim...
متن کامل